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Context of the breast cancer

Ï 1st cancer in women. Affects 54,000 women in France each year
Ï Complex disease due to an accumulation of mutations in oncogenes

and/or supressor of tumor genes (BRCA 1/2, PALB2, RAD51, etc.)
Ï Inherited mutation in 10 to 15% of the cases leading more often to

severe family histories (FH)

Data structure in genetic diseases modeling

V : the set of variant status
var : the set of variant data
X : the set of all possible values for the genotypes
seq : the set of sequencing data
Y the set of phenotypes (survival data)

}
→ FH = {seq,Y }

patho : the set of pathology reports
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The Claus-Easton model

Ï Developped by Claus et al. (1991) and Easton et al. (1993)
Ï Used in first intention at the Curie Institute
Ï Focuses on the genotypes (X) and the phenotypes (Y )
Ï Autosomal, biallelic, dominant mode of inheritance
Ï Estimated allele frequency (f = 0.33%); hazard functions per

genotype (λ0 and λ1) derived from Easton’s estimated densities
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Figure 1: Annual death incidences in the French female population (INED, 2017) and
annual breast cancer incidences for non-carriers and carriers estimated from Easton
et al. (1993).

Our objectives: Implement the Claus-Easton model in a
Bayesian network (sum-product algorithm) combined with
survival data and develop a user-friendly interface.

Implementation

P (X ,Y ) =
∏

i

P
(
Xi|Xpati

,Xmati

)︸               ︷︷               ︸
genotypes

P (Yi|Xi)︸     ︷︷     ︸
phenotypes

The genotypes (unobserved) : X = (Xi)i=1,...,n ∈ {00,01,10,11}n

Ï Mode of inheritence and allele frequency from the
Claus-Easton literature

Ï Hardy-Weinberg for the founders (assumption)
Ï Mendelian transmission for the offsprings

(assumption)

The phenotypes (observed (FH))

Yi(survival data) =
{

{Ti > τi} if i is censored (UN) at age τi

{Ti = τi} if i is affected (BC or OC) at age τi

with Ti being the age at disease onset for individual i.

Ï Incidence

λ(t) =
{
λ0(t) for X = 00 (non-carrier (NC))
λ1(t) for X , 00 (carrier (C))

Ï Survival functions of Ti :{
S0(t) = exp

(−∫ t
0 λ0(t)

)
dt for NC

S1(t) = exp
(−∫ t

0 λ1(t)
)

dt for C
Ï Conditional probabilities :

Ï For a censored individual at age τi : P(Yi|Xi) =
{

S0(τi) for NC
S1(τi) for C

Ï For an affected individual at age τi : P(Yi|Xi) =
{

S0(τi)λ0(τi) for NC
S1(τi)λ1(τi) for C

Computation of the posterior carrier probability

Problematic
We denote by Ki(Xi,Xpati

,Xmati
), the potential related to i.

Ki(Xi,Xpati
,Xmati

) = ∑
Yi∈FH
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)
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Using the Bayes rule, for any individual j,

P(Xj = xj |FH) = P(Xj = xj ,FH)

P(FH)
=

∑
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∏
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)∑

X
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)

With X ∈ {00,10,01,11}n → 4nconfigurations

The sum-product algorithm (Koller and Friedman, 2009) is
equivalent to the latest version of Elston-Stewart algorithm
(Totir et al., 2009) !!"#$"!#%&'%%(%)*+,-
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Figure 2: Hypothetical family with a severe FH.

Using the conditional independencies between the individuals
and the minimum fill-in heuristic, we obtain the following junc-
tion tree :

Figure 3: One junction-tree obtained from our hypothetical family.

e.g. F3(6,7) =∑
X11

K11(X11,X6,X7)

F4(6,7) =∑
X12

K12(X12,X6,X7)F3(6,7) B4(6,7) =∑
X8

F6(6,8)B7(7,8)

e.g.: P (X6,X7,X8|FH) ∝ F4(6,7)F6(6,8)B7(7,8)

P (X6|FH) ∝∑
X8

F6(6,8)B6(6,8)

Results : The interface

Figure 4: Example of a data entry of a hypothetical family history with the interactive
interface.

Figure 5: Probability of being a carrier in a barplot (on top) and in a table (at the
bottom) obtained with the interface for each individual of our hypothetical family.

Results - Carrier predisposition
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Figure 6: Probability of being a carrier for each individual of a family with evolving FH.

Computation of the disease risks prediction

We denote by π(τ) =P(Xi, 00(carrier)|FH)

Ï With no competing risk of death
P(T ≤ t|FH) = 1−S(t|FH) with
S(t|FH) =∑

Xi
P(T > t,Xi|FH) =π(τ) S1(t)

S1(τ) + (1−π(τ)) S0(t)
S0(τ)

Ï Quantities needed to compute the competing risk
π(t|FH) = π(τ)S1(t)

S(t|FH)S1(τ)

λdisease(t|FH) =π(t|FH)λ1(t)+ (1−π(t|FH))λ0(t)

Ï With competing risk of death
T∗= min(Tdisease,Tdeath)
λboth(t|FH) =λdisease(t|FH)+λdeath(t)
P(T ≤ t|FH) = ∫ t

τ Sboth(u)λdisease(u)du

Results - Tumoral risk
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Figure 7: Left-panel : Disease risk for indivudals 12 and 7 in our hypothetical family.
The risk is computed with and without the consideration of the competing risk of
death. Right-panel : Percentage of error made (difference) while computing the disease
risk up to the age 100 without vs with taking into account the competing risk of death
for different couples (π,τ). The dashed lines represent the error made for individual 12
in our hypothetical family.
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